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Motivation for e- EDM Searches
• Direct observation of T-violation (and P-violation).
• Constraints on extensions to the standard model.
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|de| < 1.6 x 10-27 e*cm
E.D. Commins Tl Exp. Limit [PRL 88, 071805 (2002)]



Why Use Molecular Ions?

Why use molecules?
• Large internal electric fields.
• Molecules have closely spaced levels of opposite 
parity they can be fully polarized with E~100 V/cm.
• Molecules containing heavy atoms give large 
relativistic enhancement to the electron EDM signal.

Why use ions?
• Ions are easy to trap.
• Potential for long spin coherence times.



Candidate Molecular Ions
HfH+ and PtH+

• 3Δ ground states ~100 V/cm to fully polarize
• strong atomic 6s orbital character large Eeff
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Candidate Molecular Ions
HfH+ and PtH+

• 3Δ ground states ~100 V/cm to fully polarize
• strong atomic 6s character large Eeff
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Experimental Procedure
HfH+ 3Δ1 J=1 ground state

• Ω-doublet splitting ~ 200 MHz

m = -1 m = 0 m = +1
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Experimental Procedure
HfH+ 3Δ1 J=1 ground state

• Electric field mixes states of opposite parity.

m = -1 m = 0 m = +1
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Experimental Procedure
HfH+ 3Δ1 J=1 ground state

• Magnetic field lifts degeneracy between |m|=1 
levels.

m = -1 m = 0 m = +1

μmB

μmB
μmB

μmB

Energies not to scale.

B

s
s

B

s
s



Experimental Procedure
HfH+ 3Δ1 J=1 ground state

• Electron EDM shifts the |m|=1 levels in opposite 
directions in the two Ω-doublet levels.

m = -1 m = 0 m = +1
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Experimental Procedure
HfH+ 3Δ1 J=1 ground state

• Perform electron spin resonance (ESR) 
frequency measurement via the Ramsey Method.
• Photodissociate one spin state and count HfH+

and Hf+ ions.
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Experimental Setup
• Discharge or laser ablation creates molecular ions.
• Expansion cools ions to rovibrational ground state (T ~ 1 K).

ion source



Experimental Setup

ion lens

• Discharge or laser ablation creates molecular ions.
• Expansion cools ions to rovibrational ground state (T ~ 1 K).
• Mass selective ion lens focuses only one isotope into trap.



Experimental Setup

Paul trap

• Linear Paul trap holds ions for measurement.
• Electric and magnetic fields are applied.
• Rf applied for ESR via Ramsey Method.
• Photodissociation laser pulse to detect spin states.



Experimental Setup

ion
counting

• Linear Paul trap holds ions for measurement.
• Rotating E-field and quadrupole B-field are applied.
• Rf applied for ESR via Ramsey Method.
• Photodissociation laser pulse to detect spin states.
• Channeltron counts atomic or molecular ions.



Applying Electric & Magnetic Fields
• Electric field defines molecular quantization axis.
• Use a radial electric field that rotates:

• Fast enough that the ion motion is negligible.
• Slow enough that the molecular axis adiabatically follows.

• The magnetic quadrupole field gives rise to a radial magnetic 
field on the ion’s circular orbit, B=B’R.



Applying Electric & Magnetic Fields

quadrupole B-field homogeneous B-field

• Electric field defines molecular quantization axis.
• Use a radial electric field that rotates:

• Fast enough that the ion motion is negligible.
• Slow enough that the molecular axis adiabatically follows.

• The magnetic quadrupole field gives rise to a radial magnetic 
field on the ion’s circular orbit, B=B’R.



Sensitivity Estimate
• N = 150 ions/shot (107 ions/day)
• Eeff = 1010 V/cm
• τ = 1 second

• Flip magnetic field direction.
• Change Ω-doublet levels.
• Change direction of rotating E-field
• Increase magnitude of rotating E-field
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Experimental Progress
• Built a linear Paul trap.
• Laser ablation of HfO2 target to form Hf+ and HfO+.
• Photodissociation of CH+ to C+ and H.
• Laser ablated Hf target in expansion, loaded Hf+ ions into trap
• Mass spectrometry of Hf+ with ~1 amu resolution.

1 cm

CH+ → C+ + H

T~1K Hf+
beam



Summary
• Proposed an experiment to search for the electron EDM 
using trapped molecular ions.
• Expect Eeff ~ 1010 V/cm.
• Expect spin coherence times ~ 1 second.
• Projected sensitivity ~ 6 x 10-29 e*cm with 1 day of data.
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